🔎Basic Search
import pyenvector as ev
import numpy as np
# Prepare normalized data
vecs = np.random.rand(100, 512)
vecs = vecs / np.linalg.norm(vecs, axis=1, keepdims=True)
# Initialize and insert
ev.init(address="localhost:50050", key_path="keys", key_id="example")
index = ev.create_index("example_index", dim=512)
metadata = [f"metadata_{i}" for i in range(100)]
index.insert(vecs, metadata)
# Perform search with a single query
search_index = ev.Index("example_index")
query = vecs[0]
result = search_index.search(query, top_k=2, output_fields=["metadata"])[0]
print(result)
# [{'id': 1, 'score': 0.9999, 'metadata': 'metadata_0'},
# {'id': 59, 'score': 0.7888, 'metadata': 'metadata_58'}]Multi-query Search
Last updated

